AN ALTERNATIVE COMPUTATIONAL METHOD TO THAT OF JUDD

G. Várhegyi

Research Group for Inorganic Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary
(Received August 21, 1972)

Judd and Norris [1] have dealt with the determination of the reaction order n from the equation

$$
\begin{equation*}
(1-\alpha)^{1-n}=1+(n-1) k t \tag{1}
\end{equation*}
$$

They concluded that the only correct method is the application of the least squares principle

$$
\begin{equation*}
\sum_{i}\left(\delta x_{\mathrm{i}}\right)^{2}=\min \tag{2}
\end{equation*}
$$

where the symbol $\delta \alpha_{\mathrm{i}}$ stands for the difference between the observed and the calculated values of α_{i}.

Since Eq. (1) is non-linear by two parameters they solved the problem by a general non-linear minimization method.

One of the non-linear parameters, however, can be eliminated if we use the following procedure:

Suppose that n is fixed. Eq. (1) is then linear for k and can be written as

$$
\begin{equation*}
Y=1+(n-1) k t \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=(1-\alpha)^{1-n} \tag{4}
\end{equation*}
$$

If we differentiate Eq. (4), an arbitrary but not too great change of α can be expressed as follows:

$$
\begin{equation*}
\delta \alpha \cong \frac{1}{1-n}(1-\alpha)^{n} \delta Y \tag{5}
\end{equation*}
$$

Using relation (5), condition (2) can be well approximated:

$$
\begin{equation*}
\sum_{\mathrm{i}}\left(\delta \alpha_{\mathrm{i}}\right)^{2} \cong \sum_{\mathrm{i}} c_{\mathrm{i}}^{2}\left(\delta Y_{\mathrm{i}}\right)^{2}=\min \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\mathrm{i}}=\frac{1}{1-n}(1-x)^{n} \tag{7}
\end{equation*}
$$

For given n relations (3), (6) and (7) present together an extremely simple linear least squares problem. If the value of n is changed systematically the best value of n can easily be found. The simplest way is to calculate sum (6) for $10-15$ different values of n and choose the least one.

Reference

1. M. D. Judd and A. C. Norris, J. Thermal Anal., 5 (1973) 179.
